A Facile General Synthesis of Thiocarboxylate S-Esters of Glyphosate and Its Derivatives

Michael K. Mao,* John E. Franz
Monsanto Agricultural Company, A Unit of Monsanto Company, 800 N. Lindbergh Blvd, St. Louis, MO 63167, USA

Various glyphosate thiocarboxylate S-ester derivatives, e.g. S-alkyl 2-(phosphonomethylenemio)ethanethioates and S-alkyl 2-[(phenoxophosphorylmethyl)amino]ethanethioates, are readily synthesized from N-benzoxycarbonylglycine using N-methylene-L-tert-butylamine as the methane transfer reagent followed by nucleophilic phosphorylation with tris(trimethylsilyl) phosphate.

N-(Phosphonomethyl)glycine (glyphosate) (1) is the active ingredient in Roundup®, a broad spectrum postemergence herbicide.1-3 In pursuit of discovering new and unique biological properties of glyphosate and its analogs, we initiated an effort to synthesize the thiocarboxylate S-esters (S-alkyl or S-aryl thiocarboxylates) 2 of glyphosate and its derivatives. The labile thiocarboxylate S-ester moiety would be readily hydrolyzed in vivo and the expected higher lipophilic of these compounds could provide better penetration through the leaf surface which might convene interesting plant growth regulating properties.

While the O-esters of N-(phosphonomethyl)glycine are readily synthesized by refluxing the free acid and a catalyst in the corresponding alcohols, the synthesis of the thiocarboxylate S-esters is not trivial. The presence of both the phosphonic acid and the amino moieties in the molecule interfere with the known methodologies for the direct conversion of the carboxylic acid to its thiocarboxylate S-esters. Also, the α-substituted nitrogen atom enhances the lability of the thiocarboxylate S-esters (vide infra) and the poor solubility of glyphosate in organic solvents poses a further restraint on the choice of the reaction conditions. Indeed, attempts using carboxy activating reagents such as thionyl chloride, catecholborane, trimethylsilyl triflate,4-6 2-fluoro-1-methylypyridinium tosylate,7 diphenylphosphoryl azide8 etc. followed by thiol reagents were tried with no promising results. Chlorothioformate,9 which itself acts both as the activating and the thiolating reagent, reacted with the protected glyphosate derivative 3 to yield the desired 4 in essentially quantitative yield. However, attempts to remove the trifluoracetetyl and the diphenyl ester groups invariably resulted in the destruction of the molecule. In fact, the lability of the molecule and its sensitivity to pH (vide infra) make most synthetic routes that involve protecting groups undesirable. A new strategy was sought and is described in the Scheme. N-benzoxycarbonylglycine (Z-glycine) was activated with diphenylphosphoryl azide and the mixed anhydride was reacted with the desired mercaptans to give the corresponding thiocarboxylate S-esters 5 in high yields. Control of reaction temperature is critical as too high a temperature causes the Curtius rearrangement to occur and the reaction takes on an entirely different course. The Z-glycine thiol esters thus prepared can be conveniently deprotected (70-90%) with 30% hydrogen bromide in aqueous acetic acid. The products are amine

\[
\begin{align*}
&\text{PhO} \quad \text{Cl} \quad \text{Et} \\
&\text{PhO} \quad \text{Cl} \quad \text{Et} \\
&\text{PhO} \quad \text{Cl} \quad \text{Et} \\
\end{align*}
\]

Scheme
Table. Glyphosate Thiocarboxylate S-Ester Derivatives Prepared

<table>
<thead>
<tr>
<th>Product</th>
<th>Yield (%)(^a)</th>
<th>mp (°C)</th>
<th>Molecular Formula (^b)</th>
<th>IR (Nujol) (v (cm^{-1}))</th>
<th>NMR (D(_2)O) (^{31}P, \delta^c)</th>
<th>(1^H, \delta, J (Hz))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a</td>
<td>68</td>
<td>171–172</td>
<td>C({10})H({10})NO(_4)PS (213.5)</td>
<td>1680, 1430, 1400, 1360, 1300, 1250, 1100</td>
<td>8.42</td>
<td>4.3 (s, 2H), 3.2 (d, 2H, J = 12), 3.1 (q, 2H, J = 6), 1.2 (s, 3H, J = 6)</td>
</tr>
<tr>
<td>2b</td>
<td>61</td>
<td>145–155</td>
<td>C({10})H({10})NO(_4)PS (199.1)</td>
<td>1680, 1480, 1410, 1330, 1250, 1120</td>
<td>8.50</td>
<td>4.3 (s, 2H), 3.2 (d, 2H, J = 13), 2.3 (q, 3H)</td>
</tr>
<tr>
<td>2c</td>
<td>55</td>
<td>167–170</td>
<td>C({10})H({10})NO(_4)PS (325.4)</td>
<td>1680, 1530, 1470, 1340, 1270, 1200, 1100</td>
<td>12.4</td>
<td>4.4 (s, 2H), 3.8 (d, 2H, J = 14), 3.1 (t, 2H, J = 6), 1.5–0.9 (m, 19H)</td>
</tr>
<tr>
<td>2d</td>
<td>65</td>
<td>145–148</td>
<td>C({22})H({44})NO(_4)PS (437.6)</td>
<td>1680, 1570, 1540, 1480, 1300, 1260, 1210, 1040</td>
<td>12.69</td>
<td>4.4 (s, 2H), 3.7 (q, 2H, J = 14), 2.9 (t, 2H, J = 6), 2.0–1.0 (m, 10H)</td>
</tr>
<tr>
<td>2g</td>
<td>60</td>
<td>195–196</td>
<td>C({10})H({10})NO(_4)PS (267.2)</td>
<td>1685, 1540, 1320, 1250, 1150, 950</td>
<td>12.40</td>
<td>4.5 (brs, 2H), 3.75 (d, 2H, J = 14), 3.5–3.2 (m, 1H), 2.0–1.2 (m, 9H)</td>
</tr>
<tr>
<td>8f</td>
<td>30</td>
<td>174–176</td>
<td>C({10})H({10})NO(_4)PSi (303.5)</td>
<td>1680, 1600, 1580, 1430, 1200, 1050</td>
<td>8.40</td>
<td>7.2 (brs, 5H), 4.4 (brs, 2H), 4.0 (brs, 2H, J = 14), 3.5–3.1 (sept, 1H, J = 7), 1.4 (d, J = 7Hz)</td>
</tr>
<tr>
<td>8h</td>
<td>31</td>
<td>198–200</td>
<td>C({10})H({10})NO(_4)PSSi (361.5)</td>
<td>1680, 1520, 1430, 1340, 1250, 1100</td>
<td>8.39</td>
<td>7.15 (brs, 5H), 4.35 (s, 2H), 3.9 (d, 2H, J = 14), 3.3 (m, 2H), 1.0 (m, 1.0, 2H), 0.1 (brs, 9H)</td>
</tr>
<tr>
<td>9f</td>
<td>17</td>
<td>184–185</td>
<td>C({10})H({10})NO(_4)PS (255.2)</td>
<td>1680, 1450, 1380, 1350, 1230, 1270, 1200, 1100</td>
<td>10.2</td>
<td>4.3 (s, 2H), 3.9 (q, 2H, J = 8), 3.7 (sext, 1H, J = 7), 3.2 (d, 2H, J = 12), 1.3 (d, 6H, J = 7), 1.25 (t, 3H, J = 8)</td>
</tr>
</tbody>
</table>

\(^a\) Yield of isolated pure products based on 7 and are not optimized.
\(^b\) All adducts gave satisfactory microanalyses and correct M\(^+\) on FAB-MS.
\(^c\) Chemical shifts (proton decoupled) are reported with positive values being downfield of the ref. standard (85% H\(_2\)PO\(_4\)).
\(^d\) CF\(_3\)CO\(_2\)H instead of D\(_2\)O as solvent.

Hydrobromide salts 6 which are non-hygrosopic and easily isolated. Treatment of the amine salts with N-methylene-tert-butyramine at room temperature gives the hexahydrotriazines 7 in excellent yields. The novel use of the N-methylene-tert-butyramine as a methylene group transfer reagent is noteworthy. The reaction is mild, clean and the only byproduct is the tert-butyramine hydrobromide which is readily removed by filtration.

The cracking of the hexahydrotriazines\(^10\)–\(^12\) with tris(trimethylsilyl)phosphite to construct the carbon-phosphorus bond and thus the glyphosate skeleton was very successful after some experimentation. Acetonitrile solvent is critical for this reaction and the labile products were isolated by slowly hydrolyzing the reaction mixture at 0°C in a mixture of 2-propanol/tetrahydrofuran. Good yields (60–70%) and more importantly, high purity of the desired glyphosate thiocarboxylate S-ester 2 can be obtained in this manner. Hence the whole synthetic sequence is facile and requires no purification of the intermediates or the products. Other glyphosate thiol ester derivatives can also be prepared using suitable alkyl or aryl phosphites. The monophenyl glycosophosphate thiocarboxylate 8 was obtained in moderate yields using excess diphenylphosphite. The reaction was conducted at room temperature to minimize the formation of bis(phosphonomethyl)glycinate and other side products. The resulting diphenoxophosphoryl intermediate was acidified and allowed to hydrolyze slowly at room temperature to yield the desired thiol ester. The use of ethyl bis(trimethylsilyl)phosphite as the phosphite reagent was also successful and the thiocarboxylate product 9 was conveniently synthesized. However, in this event boron trifluoride-dieethyl ether complex catalyst is required to overcome the substantially slower reaction rate.

The mildness of this synthetic methodology is well exemplified by the lability of the thiocarboxylate S-esters synthesized. For example, the phenylthio ester 2e decomposes rapidly upon isolation after the hydrolysis step, the methylthio ester 2b has a very short half-life and all other glyphosate thiocarboxylate S-esters decompose slowly upon prolonged storage at room temperature. Salts of these thiocarboxylate S-esters, however, are even more labile than their parent compounds and their shelf lives are usually less than one day. As expected, these interesting glyphosate derivatives show good to excellent glyphosate-type herbicidal activity.

All reagents were of commercial quality from freshly opened containers. N-methylene-tert-butyramine was purchased from Pfaltz & Bauer, Inc. Tris(trimethylsilyl)phosphite was purchased from Pettrarch Systems and was redistilled before use. Reactions were generally run under a positive pressure of dry N\(_2\) unless indicated otherwise. Melting points were recorded on a Thomas-Hoover capillary melting point apparatus and are uncorrected. \(^1^H\)-NMR were recorded on a Varion 400 MHz or Varian EM-360 60 MHz and \(^31^P\)-NMR were recorded using a Jeol JNMR-FX-100. \(^31^P\) resones are reported relative to external standard 85% aq H\(_3\)PO\(_4\). Mass spectra were recorded on a Finnigan 4535 spectrometer. IR spectra were recorded on a Perkin-Elmer 137 spectrophotometer. Elemental analyses were performed by Atlantic Microlabs, Inc.

Benzy] [(Eththio)carboxymethyl]carbamate (5a); Typical Procedure:

N-Benzylxoxycarbonylglycine (5 g, 23.9 mmol) is dissolved in DMF (20 mL) at 0°C and diphenylphosphoryl azide (10.3 mL, 2 equiv) is added via a syringe. Et\(_3\)N (2.1 mL, 1.2 equiv) is added followed by the addition of Et\(_3\)N (6.7 mL, 2 equiv). The solution is stirred at 0°C and let gradually warm to r.t. for a period of 16 h. The solution is washed with sat. aq NaHCO\(_3\) (2 × 100 mL) and extracted with CHCl\(_3\) (300 mL). The organic layer is dried (MgSO\(_4\)) and concentrated in vacuo. A simple filtration with a pad of silica gel using CH\(_3\)Cl\(_2\) removed the minor impurities to give a clean product as an oil; yield: 4.8 g (80%).
1H-NMR (CDCl₃/TMS): δ = 7.3 (s, 5 H), 5.2 (s, 2 H), 4.1 (d, 2 H, J = 6 Hz), 2.9 (q, 2 H, J = 7 Hz), 1.2 (t, 3 H, J = 7 Hz).

Other alkylthio esters such as 5b (mp 68–69°C), 5e (mp 168–169°C), 5f (oil), 5g (oil), 5d (mp 69–72°C), 5h (oil), 5g (mp 86–89°C), 2-furfuranyl (mp 62–64°C) and 4-methoxyxenyl (mp 84–85°C) are prepared similarly.

S-Ethyl 2-Aminoethanethioate Hydrobromide (6a); Typical Procedure:

Compound 5a (1 g, 3.95 mmol) is mixed with 30% HBr in AcOH (21 ml, 2 equivs.) at 0°C. The solution is warmed to r.t. and stirred for 45 min. It is then poured into Et₂O (10 ml). The white solid which precipitates out is filtered and washed with Et₂O (2 x 30 ml). The product (0.62 g, 78%) obtained is slightly hygroscopic but otherwise pure (mp 163–166°C).

1H-NMR (DMSO-d₆): δ = 4.1 (s, 2 H), 3.0 (q, 2 H, J = 7 Hz), 1.2 (t, 3 H, J = 7 Hz).

Other S-alkylthio esters amine hydrobromides salts prepared by this procedure include 6b (mp 196–199°C), 6c (mp 117°C), 6d (mp 69–72°C), 6e (mp 195–197°C), 6f (mp 183–185°C), 6g (mp 215°C).

S,S,S-Triphenyl Hexahydro-1,3,5-triazine-1,3,5-triethanethioate (7c); Typical Procedure:

Compound 6c (4 g, 16.11 mmol) is mixed with MeCN (50 ml) at r.t. and N-methylene-terti-butylamine (1.37 g, 1 equiv) is added. A homogeneous solution is obtained which gradually turned cloudy and after ~0.5 h, a precipitate is formed. The reaction is stirred overnight for a total of 16 h and Et₂O (50 ml) is added. The precipitate is filtered and washed with another portion of Et₂O (50 ml). The byproduct, tert-butylamine hydrobromide (2.1 g, 84.5%) is thus obtained. The filtrate is concentrated in vacuo, diluted with CH₂Cl₂, and filtered again to remove the remaining hydrobromide salt. A total of 2.5 g (86%) of pure product (mp 63–64°C) is obtained in this manner.

1H-NMR (CDCl₃/TMS): δ = 7.3 (s, 5 H), 3.8 (s, 2 H), 3.6 (s, 2 H).

Other analogs such as 7d (mp 63–65°C) and the 7f (mp 74–76°C) are prepared similarly.

S-Ethyl 2-(Phosphonomethylamino)ethanethioate (2a); Typical Procedure:

Compound 7a (720 mg, 1.83 mmol) is mixed with dry MeCN (6 ml) and 1.6 g (5.4 mmol) of triis(trimethylsilyl) phosphite is added. The solution is then heated to 80°C. After 5 h, 31P-NMR shows total consumption of triis(trimethylsilyl) phosphite. Another portion of the reagent (0.6 g, 2 mmol) is added and the solution is heated for another 2 h. The reaction is cooled and added dropwise into a mixture of i-PrOH (10 ml) and THF (15 ml) at 0°C. After ~0.5 h, a precipitate appears. The solid is centrifuged and washed with Et₂O (2 x 20 ml). It is then dried on a porous plate to give 68% of pure product (mp 171°C). Other thiol esters of glycosphatase (see Table) are synthesized in a similar fashion.

S-Isopropyl 2-[(Phenoxyphosphoryl)methyl]amino]ethanethioate (8f); Typical Procedure:

Compound 7f (1 g, 2.3 mmol) is mixed with dry MeCN (4 ml) and diphenyl phosphite (5.3 ml, 4 equivs.) is added in one portion. The reaction is stirred at r.t. for a total of 20 h. MeCN is removed in vacuo and replaced with Et₂O (10 ml). HCl gas was bubbled in at 0°C for a minute until saturation occurred. Enough cyclohexane is added until a viscos oil separates from the solvent. The oil is then washed 3–4 times with Et₂O/cyclohexane (1:1, 10 ml) to remove excess HCl and diphenyl phosphite. Propylene oxide (5 ml) is added and the solution is stirred to give a homogenous solution (a warm water bath is used). After ~15 min, volatile components are removed by concentrated in vacuo and wet acetone (5 ml, 5% H₂O content) is mixed with the remaining oil. After 5 d, the white crystals are collected, washed with Et₂O (10 ml) and dried to give 660 mg (30%) of monophenyl isopropyliithiyl ester of glycosphatase (see Table).

Received: 8 April 1991; revised: 8 July 1991

(4) Emde, H.; Simchem, G. Synthesis 1977, 867.