Synthesis of Phosphomethionine and Related Compounds

Coretta C. TAM, Karen L. MATTOCKS, Max TISHLER*
Department of Chemistry, Hall-Atwater Laboratories, Wesleyan University, Middletown, Connecticut 06457, U.S.A.

A number of phosphonic analogs of essential amino acids have been synthesized in the last decade and recent publications have indicated that some aminoalkane phosphonic acids and peptides containing them are biologically active. In a program designed to synthesize a number of α-aminoalkane phosphonic acids by various methods, and to extend our knowledge of their biological properties, we have synthesized the phosphonic analogs of methionine, ethionine, and a number of related compounds. A very recent publication on a related study prompted us to report our results at this time.

We chose to synthesize phosphomethionine (4a) and to prepare some related derivatives from it by starting with 3-methylthio propanal (1a) since the latter is manufactured industrially as an intermediate in the production of D,L-methionine and "methionine hydroxy analog". Both compounds are used commercially in the fortification of animal feeds. Phosphoethionine (4b) was also synthesized but from 3-ethylthiopropanal (1b) which we prepared from acrolein and ethylmercaptan. Both aldehydes, 1a and 1b, were converted into their respective aminoalkane phosphonic acids 4a and 4b by treatment with triphenyl phosphite and phenyl thiourea (2a) in acetic acid, followed by hydrolysis of the resulting thio ureide 3 in hydrochloric acid. This sequence worked elegantly and successfully lent itself to large scale laboratory production starting with over two mol of 1a. The first reaction in this sequence proceeded smoothly with other aryl thioureas, 2b and 2c, although the yields were lower.

The S-benzyl derivative 4e was prepared from 4a in moderate yield by refluxing with benzyl chloride in hydrochloric acid. Since 4a can be prepared in large quantities and in high yields from readily available reagents, this method provides for a convenient synthesis of 4c, and thus eliminating the preparation of 3-benzylthiopropanal as a starting material required by the method of Ref.2. Similarly, 4d was prepared from 4a and p-nitrobenzyl chloride in good yield.

Our procedure for the synthesis of phosphohomocysteine (6) is also different from that reported. Various attempts to prepare 5 or 6 by treatment of 4e or 4d with sodium in liquid ammonia or in refluxing butanol, or with hydrogen bromide gas in acetic acid solution failed. However, refluxing a solution of 4d in 48% hydrobromic acid provided, after neutralization, a yellow solid (possibly 5) which rapidly air-oxidized to 6 in good yield. Under these conditions, p-nitrobenzyl bromide was obtained as the by-product.
We have also prepared the sulfoxide, the sulfone, and the methylsulphonium iodide derivatives of phosphometheaine. Treatment of 4a with a slight excess of hydrogen peroxide in glacial acetic acid gave the sulfoxide 7 in 87% yield while treatment of 4a with two equivalents of hydrogen peroxide gave the sulfone 8 in 67% yield. The methylsulphonium iodide derivative 9 was readily formed by treating phosphometheaine with excess methyl iodide.

Phosphoethionine and the sulfoxide and sulfone of phosphometheaine were prepared for biological studies since the corresponding analogs in the amino acid series are enzyme inhibitors. The methylsulphonium iodide salt of phosphometheaine is of interest because the corresponding methylsulphonium halide of methionine has been reported to be present in cabbage leaves and is thought to have anti-ulcer activity.

Physical and spectral data of all products are shown in the Table. Melting points were determined on a Mel-Temp apparatus and are corrected. 1H-N.M.R. spectra were taken at 200 MHz with a Varian XL-200 spectrometer.

<table>
<thead>
<tr>
<th>Product No.</th>
<th>R¹</th>
<th>R²</th>
<th>Yield [%]</th>
<th>m.p. [°C] (solvent)</th>
<th>Molecular formula</th>
<th>1H-N.M.R. (solvent)¹b</th>
<th>δ [ppm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3aa</td>
<td>CH₃</td>
<td>C₆H₅</td>
<td>86</td>
<td>175-176⁰ (CHCl₃)</td>
<td>C₅H₇N₂O₅PS₂ (472.6)</td>
<td>2.02 (m, 1 H); 2.08 (s, 3 H); 2.35 (m, 1 H); 2.70 (t, 2H, J=8 Hz); 5.88 (m, 1 H); 6.79 (br d, 1 H, J=9 Hz); 7.28 (m, 15 H); 8.18 (br s, 1 H)</td>
<td>4.06</td>
</tr>
<tr>
<td>3ab</td>
<td>CH₃</td>
<td>4-O₂N—C₆H₅</td>
<td>56</td>
<td>186-187⁰ (2-butanone)</td>
<td>C₅H₇N₂O₅PS₂ (517.6)</td>
<td>2.00 (m, 1 H); 2.12 (s, 3 H); 2.26 (m, 1 H); 2.69 (t, 2H, J=8 Hz); 6.05 (m, 1 H); 7.03 (br d, 1 H, J=8 Hz); 7.30 (m, 10 H); 7.44 (d, 2 H, J=10 Hz); 8.06 (d, 2H, J=10 Hz); 9.25 (br s, 1 H)</td>
<td>4.06</td>
</tr>
<tr>
<td>3ac</td>
<td>CH₃</td>
<td>1-naphthyl</td>
<td>41</td>
<td>153-155⁰ (C₆H₆ or CCl₄)</td>
<td>C₅H₇N₂O₅PS₂ (522.6)</td>
<td>1.92 (m, 1 H); 2.00 (s, 3 H); 2.30 (m, 1 H); 2.66 (t, 2H, J=8 Hz); 5.85 (m, 1 H); 6.38 (br s, 1 H); 6.92-8.02 (m, 17 H); 8.14 (br, 11 H)</td>
<td>4.06</td>
</tr>
<tr>
<td>3ba</td>
<td>C₅H₅</td>
<td>C₆H₅</td>
<td>88</td>
<td>157-158⁰ (CHCl₃)</td>
<td>C₅H₇N₂O₅PS₂ (486.6)</td>
<td>1.22 (t, 3 H, J=7 Hz); 1.98 (m, 1 H); 2.32 (m, 1 H); 2.54 (q, 2 H, J=7 Hz); 2.72 (t, 2H, J=8 Hz); 5.91 (m, 1 H); 6.97 (br d, 1 H, J=9 Hz); 7.28 (m, 15 H); 8.36 (br s, 1 H)</td>
<td>4.06</td>
</tr>
<tr>
<td>4a</td>
<td>CH₃</td>
<td>—</td>
<td>95</td>
<td>274-275⁰</td>
<td>C₅H₇N₂O₅PS (185.2)</td>
<td>2.12 (s, 3 H); 2.15 (m, 2 H); 2.74 (m, 2 H); 3.44 (m, 1 H)</td>
<td>4.06</td>
</tr>
<tr>
<td>4b</td>
<td>C₅H₅</td>
<td>—</td>
<td>64</td>
<td>272-273⁰</td>
<td>C₅H₇N₂O₅PS (199.2)</td>
<td>1.23 (t, 3 H, J=7 Hz); 2.03 (m, 1 H); 2.22 (m, 1 H); 2.64 (q, 2 H, J=7 Hz); 2.78 (m, 2 H); 3.42 (m, 1 H)</td>
<td>4.06</td>
</tr>
<tr>
<td>4c</td>
<td>C₅H₅CH₂</td>
<td>—</td>
<td>32</td>
<td>245-247⁰</td>
<td>C₅H₇N₂O₅PS (261.3)</td>
<td>2.12 (m, 2 H); 2.59 (m, 2 H); 3.82 (m, 1 H); 3.84 (s, 2H, J=8 Hz); 7.44 (m, 5 H)</td>
<td>4.06</td>
</tr>
<tr>
<td>4d 4-O₂N—C₆H₅—CH₂</td>
<td>—</td>
<td>66</td>
<td>246-248⁰</td>
<td>C₅H₇N₂O₅PS (274.3)</td>
<td>2.13 (m, 2 H); 2.74 (m, 2 H); 3.68 (m, 1 H); 3.94 (s, 2H, J=8 Hz); 7.66 (d, 2 H, J=8 Hz); 8.26 (d, 2 H, J=8 Hz)</td>
<td>4.06</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>—</td>
<td>—</td>
<td>65</td>
<td>272-274⁰</td>
<td>C₅H₇N₂O₅PS₂ (340.3)</td>
<td>2.18 (m, 2 H); 2.26 (m, 2 H); 2.92 (m, 4 H); 3.42 (m, 2 H)</td>
<td>4.06</td>
</tr>
<tr>
<td>7</td>
<td>—</td>
<td>—</td>
<td>87</td>
<td>188-190⁰</td>
<td>C₅H₇N₂O₅PS (201.2)</td>
<td>2.26 (m, 2 H); 2.77 (s, 3 H); 3.16 (m, 2 H); 3.40 (m, 1 H)</td>
<td>4.06</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>—</td>
<td>67</td>
<td>258-260⁰</td>
<td>C₅H₇N₂O₅PS (217.2)</td>
<td>2.37 (m, 2 H); 3.18 (s, 3 H); 3.44 (m, 1 H); 3.52 (m, 2 H)</td>
<td>4.06</td>
</tr>
<tr>
<td>9</td>
<td>—</td>
<td>—</td>
<td>76</td>
<td>287-289⁰ (dec)</td>
<td>C₅H₇N₂O₅PS (327.1)</td>
<td>2.34 (m, 2 H); 2.98 (s, 6 H); 3.42 (m, 1 H); 3.56 (t, 2H, J=7 Hz)</td>
<td>4.06</td>
</tr>
</tbody>
</table>

¹ Satisfactory microanalyses obtained: C ± 0.26, H ± 0.42, N ± 0.22.
² Spectra of 3 were taken in CDCl₃ using tetramethylsilane as internal standard; 4d was taken in 10% DCI/D₂O, and 4a–e, 6, 7, 8, and 9 were taken in D₂O using sodium trimethylsilylepropanoate as internal standard.
Diphényl-1-(N-Arythiourea)-3-alkylthiopropanophosphonates 3:
A mixture of aldehyde 1a or 1b (0.10 mol), triphenyl phosphate (24.8 g, 0.08 mol), and N-arythiourea 2a, 2b, or 2c (0.08 mol) in glacial acetic acid (40 ml) is stirred at room temperature for 2 and 10 h for 3aa and 3ba, respectively. For cases 3ab and 3ac, the mixtures are heated at 60-100 °C for 0.5 h to effect solution, before cooling to room temperature and stirring for an additional 3 h. The precipitates that result in all cases are filtered, washed successively with acetic acid and ethanol, and air-dried. Analytical samples are recrystallized from appropriate solvents.

1-Amino-3-alkylthiopropanophosphonic Acids 4a and 4b:
Thiourea 3a (30.5 g, 65 mmol) is suspended in glacial acetic acid (50 ml) and concentrated hydrochloric acid (50 ml) and the mixture is heated to reflux with stirring for 7 h. After cooling, the solution is diluted with water (25 ml) and extracted with dichloromethane (3 × 25 ml). The aqueous layer is concentrated under reduced pressure and the crystalline residue dissolves in ethanol (150 ml) and concentrated hydrochloric acid (10 ml). The hot solution is filtered, cooled, and treated with propylene oxide (20 ml). Filtration followed by washing with ethanol and air-drying affords white crystalline phosphomethionine (4a). Phosphoethionine (4b) is obtained similarly from 3ba.

1-Amino-3-benzyl- and 1-Amino-3-p-nitrobenzylthiopropanophosphonic Acids (4c and 4d):
To a solution of 4a (7.1 g, 38 mmol) in concentrated hydrochloric acid (150 ml) is added benzyl chloride (4.8 g, 38 mmol). The mixture is refluxed for 15 h, cooled, and washed with ether (3 × 50 ml). The aqueous layer is brought to dryness, the residue is taken up in water (25 ml), and triturated until a white solid is formed. Filtration followed by washing successively with water, ethanol, and ether affords pure 4c. A similar reaction of 4a (1.42 g, 7.6 mmol) and p-nitrobenzyl chloride (1.31 g, 7.6 mmol) in hydrochloric acid (150 ml) gives 4d. In the latter case, the crude product is washed with dichloromethane (3 × 20 ml) instead of ether before bringing down to dryness as before.

Phosphohomocystine (6):12
A solution of 4d (3.0 g, 9.8 mmol) in concentrated hydrobromic acid (40 ml) is refluxed overnight, cooled, and washed with chloroform (4 × 25 ml). The aqueous layer is brought to dryness and the residue is dissolved in methanol (35 ml). Propylene oxide is added until pH 6 is reached and a yellow solid appears, which is filtered and washed successively with methanol and ether. The yellow solid is rapidly air-oxidized to a brown crust, which is dissolved in water/methanol/concentrated hydrobromic acid, brought to neutral pH by addition of propylene oxide and filtered to give 6 as a beige solid.

Phosphomethionine Sulfoxide (7):
To a suspension of 4a (10.0 g, 54 mmol) in glacial acetic acid (100 ml) at 0 °C is added aqueous hydrogen peroxide (30%, 7 ml, 62 mmol) carefully. After stirring for 10 min, the solution is concentrated under reduced pressure and diluted with water (5 ml) and methanol (50 ml). Acetone (75 ml in total) is slowly added to the warm solution until it becomes cloudy. On cooling to room temperature, white solids appear, which are filtered and recrystallized from water/methanol/acetic acid to give pure sulfoxide 7.

Phosphomethionine Sulfone (8):
To a mixture of 4a (2.0 g, 10.8 mmol) in glacial acetic acid (25 ml) is added hydrogen peroxide (30%, 2.4 ml, 21.1 mmol) portionwise and the mixture is stirred at room temperature for 3 days. Methanol (30 ml) and acetone (100 ml) are added. The precipitate is filtered, washed with acetone and ether, and recrystallized from water/methanol to give sulfone 8.

Phosphomethionine Methylsulfonium Iodide (9):
A stirred suspension of 4a (1.8 g, 10 mmol) in methanol (30 ml) containing methyl iodide (6 ml, 0.1 ml) is boiled under reflux for 24 h during which time the starting solid goes into solution and the nicely crystalline product separates. Essentially pure 9 is separated by filtration and washed copiously with methanol.

We are gratefully to Merck & Co., Inc. and Allied Corporation for financial support.

Received: June 16, 1981
(Revised form: September 2, 1981)

We are grateful to Dr. Byron L. Williams, Jr., of Monsanto Chemical Company for a supply of 1a.
W. L. Patterson, V. du Vigneaud, J. Biol. Chem. 111, 393 (1935).
For large scale preparation of 6, we have recently found that the procedure of Kudzin and Stec is superior to the one we have reported here.